网上科普有关“宇宙和银河系哪个大”话题很是火热,小编也是针对宇宙和银河系哪个大寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
问题一:宇宙和银河系哪个大? 宇宙是无穷大的,银河系是宇宙中的一个星系。
问题二:宇宙和银河系哪个大? 宇宙大
问题三:银河系是最大的吗?银河系是不是就是宇宙 可以肯定银河系不是宇宙本身,银河系只不过宇宙中一个很普通的星系而已,直径10万光年,就目前的观测资料表明,不管体积和质量都属于中等偏小的天体系统。天文学家已经发现了一个正在膨胀的名为Abell 3827的星系团大型星系,这个星系可能会打破纪录成为近宇宙中最大的星系。这个星系的确切质量还不十分清楚,但是可能是太阳质量的13万亿倍,是银河系质量的20倍。
问题四:太明系宇宙银河系地球哪个排在第一 从大到小:宇宙、银河系、太阳系、地球
从小到大:地球、太阳系、银河系、宇宙
问题五:宇宙,太空银河系等大小什么关系 宇宙是最大的,是对所有天体的总称。
按小到大排序:地球-太阳系-银河系-本星系群-宇宙。
问题六:太阳系和银河系哪个大? 当然是银河系了!太阳系就是在银河系里的!而银河系又在宇宙里的!而宇宙阀狭义)又被包括在一个星系里的!还有外星系,那就更大了!
问题七:宇宙和银河系哪个大? 银河系直径10万光年,而宇宙的直径已经观测到920亿光年以上。宇宙中有至少几千亿个银河系。
问题八:宇宙和银河系谁大 宇宙大!宇宙说的是无限空间,包括无数个星系!
问题九:宇宙,太阳系,银河系,地球哪个大 宇宙
问题十:全世界银河和宇宙那个大一点 要说全世界银河和宇宙哪个大?那当然是宇宙最大了。宇宙无边无际无限大,没有什么可与之相比。其次是银河系,银河系虽说也很大,但银河系在宇宙中如同九牛一毛一般不值一提。而全世界一般特指是地球,地球之小与银河系和宇宙更是无法相提并论了!
天文与数学小知识
宇宙银河系太阳系地球从小到大的顺序排列:地球、太阳系、银河系、宇宙。
天体系统的层次结构如下:
天体系统的层次由高到低依次是:总星系,银河系,太阳系,地月系。太阳系质量的99.87%都集中在太阳。太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳运行(公转)。
太阳只是一颗非常普通的恒星,在广袤浩瀚的繁星世界里,太阳的亮度、大小和物质密度都处于中等水平。
天体系统,是宇宙各星系的统称。宇宙间的天体都在运动着,运动着的天体因互相吸引和互相绕转,从而形成天体系统。万有引力和天体的永恒运动维系着它们之间的关系,组成了多层次的天体系统。
天体系统有不同的级别,按从低到高的级别,依次为地月系,太阳系,银河系,和总星系。
太阳系位于银河系边缘,银河系第三旋臂——猎户旋臂上。
太阳系是由太阳以及在其引力作用下围绕它运转的天体构成的天体系统。它包括太阳、八大行星及其卫星、小行星、彗星、流星体以及行星际物质。人类所居住的地球就是太阳系中的一员。
本星系群:
银河系所属的星系群。本星系群是一个典型的疏散星系团,没有明显的向中心聚集的趋势。成员星系约40个。银河系和仙女星系是本星系群成员星系中最大的两个,它们大体上位于本星系群的中心。除银河系和仙女星系外,绝大部分成员星系是矮星系。
本星系群的半径约1百万秒差距,质量约6.5×1011太阳质量,其中的绝大部分集中在银河系和仙女星系。群内的气体不多,约占总质量的1%。星系群——星系一般不单独存在,有成团的倾向。
星系在自成独立系统的同时,以一个成员星系的身份参加星系团的活动。超过100个星系的天体系统称作“星系团”,100个以下的称为“星系群”。
1. 天文中数学小知识
天文中数学小知识 1.有趣的天文科学小知识有哪些
有趣的天文科学小知识有光年是距离单位、太阳的颜色、太阳系中表面温度最高的行星、太阳系中表面风速最快的行星、太阳系中度日如年的行星。
1、光年是距离单位
光年是天文大尺度距离单位,并非时间单位。鉴于光速在真空中不受惯性系和参考系限制而恒定不变的性质,人类把光速作为衡量距离的精准单位,还有一种含义,因为“光年”包含“年”这个字,而年通常是时间单位。
一光年就是光运行一年的距离,科学界把这个年定义为儒略年:365.25年;这样一光年精确的距离为:9460730472580800m,通俗来讲,一光年大概是:9.46万亿公里。目前人类最远探测器是于1977年发射的旅行者一号距离地球约216亿公里,也只有一光年的0.22%。
2、太阳的颜色
太阳真正的颜色是白色。我们之所以把太阳看成**,是因为地球的大气层更不容易将高波长的颜色,比如红色、橘色和**,散射出去。
因此,这些波长的颜色就是我们看到的,这也就是太阳呈现出**的原因。要是离开地球在太空中看太阳的话,就会发现太阳真正的颜色是百色(我也没看过,不知道会不会发现眼睛已经被闪瞎)。
3、太阳系中表面温度最高的行星
太阳系中表面温度最高的行星不是距离太阳最近的水星,而是金星。水星虽然距离太阳最近,但是水星表面温度在白天可以达到427℃,而金星由于有着浓密的二氧化碳气体,导致强烈的温室效应。
其表面温度最高可以达到500℃,就算在金星夜晚也有400多℃,使得金星表面平均温度有400多℃以上。顺便说下,水星因为其夜间温度可以下降至-183℃,使得水星是太阳系中表面温差最大的行星,表面昼夜温差高达600℃。
4、太阳系中表面风速最快的行星
海王星大黑斑是出现在海王星上的暗斑,如同木星的大红斑一样。它在1989年被NASA的航海家2号太空船检测到,虽然他似乎与木星的大红斑一样,但它是个反气旋风暴,它被相信是个相对来说没有云彩的区域。
这个斑点的大小与地球近似,并且非常像木星上的大红斑。起初认为它是与大红斑一样的风暴,但更接近的观察显示它是黑暗的,并且是向海王星内部凹陷的椭圆形。
围绕在大黑斑周围的风速经测量高达每时2400公里(1500英里),是太阳系中最快的风,大黑斑被认为是海王星被甲烷覆盖时产生的一个洞孔,类似于地球上的臭氧洞。
5、太阳系中度日如年的行星
金星的公转周期是224.7个地球日,而自转周期是243个地球日,也就是说金星的一天要比一年长18个地球日,在哪里是名副其实的“度日如年”。
至于原因还没有定论,不过有一点需要注意的是,金星是太阳系中唯一一个逆向自转的大行星,自转方向是自东向西,也就是说在金星上看太阳是西升东落。
2.关于数学的小知识
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。
他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。
七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。
同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。
经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。
数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。
隔年,高斯进入Braunschweig学院。这年,高斯十五岁。
在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。
最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m*3n*5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。
但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k * (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。
像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。
「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。
它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。
必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。
高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。
他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。
这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。
1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的。
3.数学小知识
1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。
2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。
4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。
5、传说早在四千五百年前,我们的祖先就用刻漏来计时。
6、中国是最早使用四舍五入法进行计算的国家。
7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。
8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。
9、荷兰数学家卢道夫把圆周率推算到了第35位。
10、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。
扩展资料
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
参考资料数学_搜狗百科
4.天文小知识
口径(即物镜之直径)是天文望远镜的绝对参数。
放大倍数=物镜焦距/目镜焦距(约为口径的毫米数),物镜焦距越长或目镜焦距越短,倍数就越高,但受口径限制,倍数太高就没有实际的效果了。一般放大倍数不大于口径毫米数的2倍。口径mm*0.2=有效最高倍数。
折射式使用方便,视野较大,星像明亮,维护方便,看行星好。
反射式无色差,口径越大获得越大的集光力,看星云好。
焦比F=焦距/口径(一般所说焦距即为物镜焦距)
短焦距镜(小焦比,焦比<=6)适合观星云、寻慧星 ;
中焦距镜(中焦比,6<;焦比<=15)适合观测双星、聚星、变星和星团 ;
长焦距镜(大焦比,焦比>15)适合观测月亮和行星。
5.咨询几个有关宇宙天文学的小知识
其他的都是发射过人造卫星而已。
目前疑似有生命的就是火星月球表面温度-233~123℃。月球是实核。
百科有相关的资料。 不能说宇宙中的行星还有什么没有探索过,就连太阳系的行星都没有全部。
实际登陆过的就是卫星月球,光每秒是约30万公里。具体数据百科也有。
中国有天文学家。 地面的还有空间的望远镜能看到多远并没有一个确切的数字,你可以看看新闻或者其他相关的网站可以看到。
光年是光在一年走的路程。哈勃能看到冥王星,但只是一个模糊的圆形,只是在中国天文的普及率没有像其他国家那么高。
美国的那个飞船好像已经飞出了太阳系的边缘,具体资料在相关的网站都可以看。
6.请说出几条天文小知识
▲.什么是宇宙?
答:宇宙是天地万物的总称,它既没有边际,也没有尽头,同时也没有开始和终结。
▲.银河系有多大?
答:许许多多的恒星合在一起,组成一个巨大的星系,其中太阳系所在的星系叫银河系。银河系像一只大铁饼,宽约8万光年,中心厚约1.2万光年,恒星的总数在1000颗以上。
▲.为什么白天看不见星星?
答:因为白天部分阳光被大气中的气体和尘埃散射,把天空照得十分明亮,再加上太阳辐射的光线非常强烈,使我们看不出星星来了。
▲.太阳系里有哪些天体?
答:太阳系中有9大行星。它们依次是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。另外,太阳系里还有许多小行星,彗星和流星,已正式编号的小行星有2958颗。最著名的彗星是哈雷彗星。
▲.为什么星星有不同的颜色?
答:星星的颜色决定于它的温度。不同的颜色代表着不同的表面温度:发蓝的星星表面温度高,发红的星星表面温度低。
▲.最亮的星是什么星?
答:天空中最亮的星是大犬座里的天狼星,星等为1.46等。距地球8.7光年。
▲.怎样找北极星?
答:在天空中很容易找到北极星:先找到大熊星,再找到北斗七星。从勺头边上的那两颗指极星引出一条直线,它延长过去正好通过北极星。北极星到勺头的距离,正好是两颗指极星间距离的5倍。也可以通过“仙后座”找北极星。
▲.蓝天有多高?
答:“蓝天”其实是地球的大气层。大气层是包围着地球的空气,根据空气密度的不同分为5层,总共有2000-3000公里厚。但绝大部分空气都集中在从地面到15公里高以下的地方,越往高处空气越稀薄。大气层有多厚,蓝天就应该有多高。
▲.为什么天空是蓝色的?
答:当太阳光照射到地球的大气层时,蓝色光最容易从其他颜色中分离出来,扩散到空气中再反射出来。而其他颜色的光穿透能力很强,透过大气层照到地球上,于是我们看天空只能见到日光中的蓝色光。
7.求六年级数学的一些小知识
祖冲之
(公元429年~500年)
祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
祖冲之孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
8.天文知识题
夜晚,仰头看天,天上星星一闪一闪地多美,从提孩时起人类一直都在关注着它们。
随着年龄的增长,知识的丰富,从认识“星星”到认知“星系”。宇宙(光世界)有1000亿个星系,每一个星系又包含数亿个恒星。
这些恒星有各自的质量,能量处在光世界里相应的质能量轨道上,由质量作用的三重性,宇宙(光世界)里引力场为主导的引力(正粒子)体系,伴存着电磁力(反粒子)体系,光子力(中性粒子)体系。引力场的中心点为(0+),中心处存在着强大的吸引力,此外还有强大的涡旋力、振动力(辐射),也就是,(0+)是独立星系体系的一股强大的“涡旋辐射引力”中心,这个“涡旋辐射引力”的能量是各个星体在引力条件下产生的“自旋±公旋±振动±辐射”能量的 *** 。
这个“涡旋辐射引力”中心称“黑洞”。从宇宙学家们不断地公布的“黑洞”照片支持了这个“涡旋黑洞”的存在。
反之,存在着“涡旋辐射电磁力”中心,称“白洞”以及中性粒子(光)力“背景辐射”的中心,称“虫洞”。冠以这三个洞中心为(0+,0-,00),它们在同一直线上。
鉴于星体三种性质的相互作用,形成偏心作用的势能(场)空间是“椭球体”。引力中心(0+)与椭球体几何中心(00)存在着一定距离(0+00),用相对性表示,存在相对因子|+η|=000+/R0。
“涡旋引力”方向(0+→00)(R0星系的平均半径)。同理,存在的斥力(电磁力)作用(与引力作用互为反对称)。
宇宙学家公布了星体“磁暴”,支持了电磁力场的存在,也就是说,在这个星系“椭球体”内同时存在的“涡旋辐射电磁场”,电磁力中心(0-)距椭球体几何中心(00),距离(000-),相对因子|-η|=(000-/R0)。“涡旋电磁力”方向为反向的0-→00,00→0-中性粒子的中心在00处或许是宇宙学家们发现的“宇宙空洞”。
即|-η|=|+η|,有|+η|+|-η|=0,反映了中性力(光子力)场是引力粒子(正粒子)与电磁粒子(反粒子)的聚合交换处,宇宙学家公布了“背景辐射”支持了中性粒子“虫洞”的存在。反映了“正反粒子的组合成为中性粒子”,外在“边界”中心处(又称拐点与奇点)。
边界(或中心)处正粒子势能与反粒子势力相互抵消零,成为中性粒子的势能。用相对性结构(RELH)原理解释,边界存在于星系的椭球中心(R=0),边界(R=1),以及半中心(R=(1/2)i(1/2),势能值U=(1-η2)U0(η=0,1,(1/2)i(1/2))当η=0,1时,U=U0η=(1/2)i(1/2)时,U=(1/2)U0U0=Σm0r0(星系的总势能值:包含着:运动(公旋)能自旋能,振动能,辐射能)。
这里:η=(1/2)i(1/2)是什么意思,答:是星系(粒子)半衰期的能量。“虫洞“在这里起了“奇点、拐点”作用(见(2010.5.14~17)在新浪博客LK*0570上发表《神奇的奇点拐点使用》,正反粒子在虫洞(奇点、拐点)的空间里,进行了粒子交换,改变了原有粒子性质。
但是,这个交换并不是直接进行,鉴于中性粒子在激发态时的不稳定性,它随机性地产生正、反、中性粒子(或反、正、中性粒子),与原有进来的反、正、中性(或正、反、中性)粒子结合,形成中性粒子,这个中性就是“光粒子”。剩下的粒子性质与原有进来的粒子相反(相同),输出反性(同性)粒子。
中性粒子在这里是媒介质粒子,这就是量小理论的“四个生成元“理论。过去科学家曾提出的“以太假设”也许出于此,由于没弄清三重性场的性质、作用,遭到遗弃,反映了科学的进步,在量子理论之前,根本不可能弄清中性场的性质、作用。
现在我们在量子理论,相对论的科学基础上,开始注意到了中性粒子“虫洞”作用。“虫洞”不仅仅在“中心”,也在“边界” *** 着三大体系的粒子,通过“虫洞”(奇点、拐点)的交换,改变了原先粒子的“相互作用性质”或“相互作用”的区域。
限制了“引力在中心不是无限大”,“电磁力在边界不是无限发散”,引力子(正粒子)与电磁力(反粒子)质量各半,也就是说:同一个粒子同时存在着“正粒子、反粒子、中性粒子”作用的“三重性”。同样,也就决定了空间同时存在三种不同性质的涡旋力中心场(0+,0-,00),因此“黑洞、虫洞、白洞”相互关联、相互制约、相互并存。
因此,当我们看到“黑洞”必定有相应的“白洞”,也必定有“虫洞”。如果这个星体(粒子)很小(很大),那么,(0+00,000-)距离也可以很小(很大),相对因子(η=ri/R)是一样的没有区别。
也就是说“三洞”概念对于宏观星体,微现的粒子体都是一致的。在宇宙(光世界)中,当我们看到星体(粒子)时,星体(粒子)势能空间足够圆,或周围的行星分布几近均匀,η的数值相对较小((0+0-)接近(到达不了)几何中心00),我们可以看到这颗星(粒子)的中心内,在有强大的吸引力(强力、超强力),另有相应的电磁斥力(弱力、超弱力)存在,这就是霍金所说的“黑洞不黑”。
当η的数值相对较大时,也就是说椭球极扁,我们可以分别看到单纯的引力(涡旋、辐射)中心“黑洞”,在另一边必定存在着单纯电磁场(涡旋、辐射)中心“白洞”。在它们的距离(1/2)中心处,必定是中性中心“虫洞”可能是“宇宙空洞“。”
三洞“存在,推。
关于“宇宙和银河系哪个大”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[访青]投稿,不代表爱之讯立场,如若转载,请注明出处:https://taoyi360.cn/zsbk/202412-35204.html
评论列表(4条)
我是爱之讯的签约作者“访青”!
希望本篇文章《宇宙和银河系哪个大》能对你有所帮助!
本站[爱之讯]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“宇宙和银河系哪个大”话题很是火热,小编也是针对宇宙和银河系哪个大寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一:宇...